The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis
نویسندگان
چکیده
The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, epsA and epsB, encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an epsB mutant is still able to form biofilms. As shown previously, a ptkA mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA.
منابع مشابه
The Bacterial Tyrosine Kinase Activator TkmA Contributes to Biofilm Formation Largely Independently of the Cognate Kinase PtkA in Bacillus subtilis.
UNLABELLED In Bacillus subtilis, biosynthesis of exopolysaccharide (EPS), a key biofilm matrix component, is regulated at the posttranslational level by the bacterial tyrosine kinase (BY-kinase) EpsB. EpsB, in turn, relies on the cognate kinase activator EpsA for activation. A concerted role of a second BY-kinase-kinase activator pair, PtkA and TkmA, respectively in biofilm formation was also i...
متن کاملProtein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective
The discovery of tyrosine-phosphorylated proteins in Bacillus subtilis in the year 2003 was followed by a decade of intensive research activity. Here we provide an overview of the lessons learned in that period. While the number of characterized kinases and phosphatases involved in reversible protein-tyrosine phosphorylation in B. subtilis has remained essentially unchanged, the number of prote...
متن کاملSubstrate Specificity of the Bacillus subtilis BY-Kinase PtkA Is Controlled by Alternative Activators: TkmA and SalA
Bacterial protein-tyrosine kinases (BY-kinases) are known to regulate different aspects of bacterial physiology, by phosphorylating cellular protein substrates. Physiological cues that trigger BY-kinases activity are largely unexplored. In Proteobacteria, BY-kinases contain a cytosol-exposed catalytic domain and a transmembrane activator domain in a single polypeptide chain. In Firmicutes, the ...
متن کاملTyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survival‡
In order to screen for cellular substrates of the Bacillus subtilis BY-kinase PtkA, and its cognate phosphotyrosine-protein phosphatase PtpZ, we performed a triple Stable Isotope Labeling by Amino acids in Cell culture-based quantitative phosphoproteome analysis. Detected tyrosine phosphorylation sites for which the phosphorylation level decreased in the ΔptkA strain and increased in the ΔptpZ ...
متن کاملProtein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk
Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this...
متن کامل